
PWM8x
Programmable 8-Channel Pulse Width Modulation Controller

Important Note from the Designer:

256 Levels of Speed Control for 8 DC Motors
256 Levels of Brightness Control for 8 DC Lights

Programmable Level for Each Channel Upon Power-Up
8 On-board Hexfets with Heat Sinks (PWM83/PWM85 only)

Dedicated Serial Interface Processor
Dedicated 8-Channel PWM Processor

1200, 2400, 9600, 19.2K Baud Rate
Optoisolated RS-232 Input
Fast On Power-up Mode

Slow Start Power-Up Mode
Program Each Channel Separately

Program All Channels Simultaneously (to same level)
7-15VDC Operation

150 ma Maximum Power Consumption

We have never developed a product quite like the PWM8x series controllers. This
product serves as a test market product to determine its usefulness in computer
control applications for our small niche of customers. If this product proves it’s
usefulness, we will expand the line to include more features, higher resolution, and
expanded versatility...the good new is, most of these upgrades can be done in
firmware, so your PWM8x will never become obsolete.

We are hoping to see a lot of response from our customers on this product. Par-
ticularly, we are seeking feedback on features that may be needed, failures that
may occur, and stories of stretched limits. Like any product we manufacture, we
intend to be very responsive with any electrical failures that may occur. We have
been very fortunate to work with a number of very interesting customers who are
using our products for some very extraordinary applications. We like to maintain
the attitude that our customers are people we work with to make our products
better. And about 99.9% of the time, our customers take the very same attitude
towards us. This mutual respect results in better products that become more re-
fined, more versatile, and more powerful as the years pass.

So please, tell us anything good, anything bad, or anything you want about your
experience with this product. We need to hear from you on this product more than
any other, as it may significantly define our future line of computer control prod-
ucts. All comments are welcome: Ryan Sheldon, ryan@controlanything.com.

PWM85 Shown Above is an Ideal Solution for many computer controlled motor speed control and light dimming applications.

There are some computer control applications that are a
little more demanding than simple on/off control signals.
If you have ever had an application where you need to
safely control the speed of DC motors or the brightness
of lights, then our PWM8x series controllers may be ex-
actly what you are looking for. The PWM8x series con-
trollers are built around a custom pulse width modulation
processor. This new processor is dedicated to providing
256 levels of pulse width modulation for 8 individual
channels. Coupled with powerful fets, the PWM8x is ca-
pable of controlling 256 levels of brightness for 8 individ-
ual light bulbs under computer control. Rated for use with
resistive and inductive loads, the PWM8x is also a very
suitable solution for DC motor speed control applications. WARNING: RISK OF ELECTICAL SHOCK WHILE DRIVING

INDUCTIVE LOADS. HEAT SINKS MAY BECOME VERY HOT
UNDER NORMAL OPERATION. SERIOUS BURN RISK!

FREE REPLACEMENT PARTS OFFER TILL JULY, 2006
We found it difficult to provide electrical ratings for the PWM8x series controllers,
mostly because of the differences between inductive and non-inductive loads.
Building a controller that is capable of universally working in every application is
difficult, if not impossible. One of the biggest obstacles to overcome is the simple
fact that we have no idea how our customers will end up using this product.
While it’s possibilities are endless, it’s limits are theoretical numbers that may or
may not apply to your application.

With a totally new product comes a totally new approach to supporting this de-
sign: We encourage our customers to use this product, use it hard, and damage
it if you need to. Test it to it’s fullest limits. Tell us what you did and what went
wrong, we will log it into our records for future design purposes, please provide
as much detail as possible. We will send you any replacement component(s)
that reside on the PWM8x series controllers that fails under any circumstances
(with the only exception being you may not exceed the rated voltages), which
may be limited to 5 replacements per customer, until July, 2006, provided you
have provided us with useful feedback indicating the electrical circumstances that
caused component failure. Our customers will be authorized to conduct repairs
and modifications without breech of warranty until July, 2006. Please report any
problems to ryan@controlanything.com.

The PWM8x has two dedicated processors: The Interface proc-
essor is dedicated to handling serial commands while the PWM
processor is dedicated to keeping the pulse stream as steady as
possible. When a command is received by the Interface proces-
sor, the PWM chip is flagged. The new command is copied from
the Interface processor to the PWM chip and the pulse stream
starts back up again. The update occurs in just a few microsec-
onds, and is undetectable to most real world control applications.
The 8 signals generated by the PWM chip are directly connected
to the gates of the 8 N-Channel Hexfets. The Hexfets connect
your external device to ground, then disconnects at very high
speed. You control the speed of the connection/disconnection,
which in turn controls the speed of a motor or the brightness of
an incandescent lamp.

The PWM8x can be used to control many types of devices with
different voltage requirements at one time. The only rules being,
all devices must operate from a DC voltage and all devices must
be able to share a common ground. For instance, a 5VDC motor
can be connected to channel 1, a 12VDC motor on channel 2, a
24VDC incandescent lamp on channel 3, a 12VDC incandescent
lamp on channel 4, etc.

Devices such as motors, solenoids, or just about anything that
contains a coils is called an inductive load. Inductive loads have
very different electrical characteristics than resistive loads. In-
ductive loads generate a huge spike of electricity every time
power is removed from the coil. This spike of electricity is carried
all the way back to the heat sinks. Touching the heat sinks of the
PWM8x while driving these kinds of loads can result in a surpris-
ingly painful shock. In addition, inductive loads tend to produce
more heat than resistive loads, posing a very serious burn risk.
As a general rule, never touch the heat sinks while in operation
and always be cautions of potential burns.

Hexfets tend to work more efficiently when they are on or off, but
turning them on and off at a high rate of speed can produce a lot
of heat, especially at lower speed settings using inductive loads.
The heat generated by a Hexfet can be unbearably hot (too hot
to safely touch). We have seen Hexfets become so hot, it melted
enough solder off the connections, causing it to disconnect itself.
We have also seen Hexfets get so hot, our board started to
smoke. In most cases, the Hexfet was fine and nothing was
damaged.

Theory of Operation

Application and Usage Notes

When a Hexfet fails, the Drain and the Source leads on the
Hexfet typically become fused together. In this case, your mo-
tor would appear to be on all the time, or an incandescent light
bulb will remain on, despite your PWM settings. The output of
the PWM controller chip is short circuit protected at minimum.
We consider your computer to be the most important thing to
protect, so we use an Optoisolator to electrically separate the
computer connection from the rest of the circuit. You can usu-
ally tell when a Hexfet is about to fail because the Hexfets will
start to smoke. Smoke does not mean they have failed how-
ever, we have seen a lot of them smoke, and once cooled
down, they work fine again.

When a Hexfet fails partially, it should be replaced. A partial
failure is caused by overheating, usually because too much cur-
rent was pulled through the drain lead of the Hexfet. A Hexfet
that has overheated is likely to be de-rated, meaning it no
longer functions properly across the entire rated temperature
range. It is easy to detect a partially failed Hexfet: They work
fine for a while, then once they get up to temperature, they fuse
the Drain and Source together. Once cooled down, they begin
operating properly again.

The ratings we have assigned to the Hexfets far under-rate the
manufactures specifications. Hexfet manufacturers tend to as-
sume you can dissipate the full TO-220 package rating of up to
50 Watts….which is simply not possible on a low-cost controller
such as the PWM8x. The heat sinks on the PWM8x controllers
are rated to dissipate only 2 Watts, the TO-220 package itself is
capable of dissipating 1 Watt. Because of the conservative
wattage ratting of the heat sinks, it is important to use Hexfets
with a low on resistance. These Hexfets generate less heat to
begin with, so a 2 Watt heat sink goes much further in terms of
the number of amps that can be pulled through the drain.

The PWM81 uses the IRLD110 Hexfet with a Wattage Rating of
1.3 Watts and a Maximum Voltage Rating of 100 VDC, and a
Maximum current of 1 Amp at 5VDC at 25º C. The PWM81 is
ideal for automotive lighting applications (except headlights),
controlling external relays, small solenoids, and very small DC
motors.

The PWM83 uses the IRFZ34N Hexfet with a Wattage Rating of
68 Watts and a Maximum Voltage Rating of 55 VDC, and a
Maximum current of 29 Amps at 10VDC at 25º C. The PWM82
is ideal for automotive lighting applications (except headlights),
controlling external relays, solenoids, and DC motors used in
robotic applications.

The PWM85 uses the IRL640 Hexfet with a Wattage Rating of
68 Watts and a Maximum Voltage Rating of 200 VDC, and a
Maximum current of 17 Amps at 5VDC at 25º C.

The PWM85 uses the IRL640 Hexfet with a Wattage Rating of
68 Watts and a Maximum Voltage Rating of 200 VDC, and a
Maximum current of 17 Amps at 5VDC at 25º C. The PWM85
is ideal for most automotive lighting applications, solenoids,
contactors, and DC motors, including DC motor used in drive
systems of small robots.

Device Failure

Partial Failure

Operational Limits Dangerous Voltages

Heat

Sending Serial Commands
The PWM8x is capable of sending and receiving data via RS-
232 serial communications. The PWM8x is compatible with just
about any computer or microcontroller ever produced, including
the Macintosh, Amiga, Basic Stamp, and of course, Windows &
DOS based machines.

Regardless of the system you are using, you will need access
to a programming language that supports program control of
the serial port on your system.

A terminal program is not suitable for controlling the PWM8x.
Commands should be sent using ASCII character codes 0-255
rather than ASCII characters (A, B, C etc.). See “ASCII Codes
vs. Characters” on this page.

Most systems require you to open the appropriate serial port
(COM port) prior to sending or receiving data.

Because there are so many different ways to send and receive
data from various languages on various platforms, we will pro-
vide generic instructions that can be easily converted to your
favorite language.

For example, if this manual says “Send ASCII 254”, the user
will need to translate this instruction into a command that is ca-
pable of sending ASCII character code 254.

To Send ASCII 254 from Visual Basic, you will use the following
line:

MSComm1.Output = Chr$(254)

In Qbasic, you can send ASCII 254 using the following line of
code:

Print #1, Chr$(254);

Note that sending ASCII character code 254 is NOT the same
as sending ASCII characters 2, 5, and 4 from a terminal pro-
gram. Typing 2, 5, and 4 on the keyboard will transmit three
ASCII character codes.

In your program, you may want to ask the PWM8x for data such
as the E3C device number. If so, your programming language
will support commands for reading data from the serial port.

For your convenience, we have provided several programming
examples in Visual Basic 6 for controlling the PWM8x. These
examples should greatly speed development time. You may
want to visit www.controleverything.com for the latest soft-
ware and programming examples.

Programming examples for the PWM8x are much more exten-
sive for Visual Basic 6 users than for any other programming
language. If you are not a VB programmer, you may consider
looking at the VB6 source code, as it is easily translated into
other popular languages.

Regardless of your programming background, the pro-
vided Visual Basic 6 source code is very easy to under-
stand and will likely resolve any communication questions
you may have. VB6 programming examples may be
viewed in any text editor.

The differences between ASCII codes and ASCII characters
tend to generate a lot of confusion among first-time RS-232
programmers. It is important to understand that a computer
only works with numbers. With regard to RS-232 data, the
computer is only capable of sending and receiving numbers
from 0 to 255.

What confuses people is the simple idea that the numbers 0 to
255 are assigned letters. For instance, the number 65 repre-
sents the letter A. The number 66 represents the letter B.
Every character (including numbers and punctuation) is as-
signed a numeric value. This standard of assignments is called
ASCII, and is a universal standard adopted by all computers
with an RS-232 serial port.

ASCII characters codes can be clearly defined as numbers
from 0 to 255.

ASCII characters however are best defined as letters, A, B, C,
D, as well as punctuation, !@#$%, and even the numbers 0-9.

Virtually all programming languages permit you to send ASCII
in the form of letters or numbers. If you wanted to send the
word “Hello” out the serial port, it is much easier to send the
letters H, e, l, l, and o than it is to send the ASCII character
codes that represent each letter.

For the purposes of controlling NCD devices however, it is
much easier to build a numeric command set. Especially when
communicating to devices where you want to speak to lots of
outputs (which are numbered), inputs (which are also num-
bered), or control specific devices using their device number
(from 0 to 255).

Put simply, it is easier to control NCD devices using ASCII
character codes 0 to 255 than it is to use ASCII characters A,
B, C, D, etc.

Because terminal programs are ASCII character based, it may
be difficult to generate the proper series of keystrokes that
would be necessary to activate a particular function. Therefore,
they are not suitable for controlling NCD devices. In a real
world control application, a terminal program would not likely be
used to control NCD devices anyway. Therefore, a program-
ming language that supports the transmission and reception of
ASCII character codes 0 to 255 is highly recommended.

ASCII Codes vs. Characters

The E3C Command Set: Software Control of Multiple NCD Devices
The E3C command set allows you to control up to 256 NCD
devices from a single serial port. It is OK to mix different types
of devices, as long as the devices are E3C compliant. The
PWM8x supports the full set of E3C commands, plus a set of
extended commands for storing and recalling the device num-
ber.

How does E3C Work?
First of all, each device must be assigned a device number
from 0 to 255. The PWM8x must be programmed with a device
number, which is accomplished using the “Store Device Num-
ber” command shown below.

E3C stands for Enabled 3-Wire Communication. Put simply,
when you first power up your computer and all the devices at-
tached to the serial port, all devices will respond to your com-
mands.

Using the E3C command set, you can specify which devices
will listen and which devices will ignore your commands. Note
that E3C commands are never ignored by any device, regard-
less of the commands you send to the controller.

The number to the left of each command indicates the ASCII
character code that must be sent to issue the command. All
commands must be preceded with ASCII character code 254 to
place the device in command mode. See examples at right.

248 Enable All Devices:
Tells all devices to respond to your commands.

249 Disable All Devices:
Tells all devices to ignore your commands.

250 Enable a Selected Device:
Tells a specific device to listen to your commands.

251 Disable Selected Device:
Tells a specific device to ignore your commands.

252 Enable Selected Device Only:
Tells a specific device to listen to your commands, all other de-
vices will ignore your commands.

253 Disable a Selected Device Only:
Tells a specific device to ignore your commands, all others will
listen.

The PWM8x supports two additional E3C commands which
should only be used when a single device is attached to your
serial port. Extended commands will report back to the com-
puter.

255 Store Device Number:
Stores the device number into the controller. The device num-
ber takes effect immediately. The enabled/disabled status of
the device is unchanged.

247 Recall Device Number:
Allows you to read the stored device number from the control-
ler.

The E3C Command Set

Extended E3C Commands

E3C Visual Basic Programming Examples

The E3C command set is easily used from any program-
ming language that supports serial communication. The
following Visual Basic 6 Example source code demon-
strates subroutines that can be used to control which de-
vices will listen and which devices will ignore your com-
mands.

Public Sub EnableAllDevices()
 'Enable All E3C Devices
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(248) 'E3C Enable All Device Command
End Sub

Public Sub DisableAllDevices()
 'Disable All E3C Devices
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(249) 'E3C Disable All Device Command
End Sub

Public Sub EnableSpecificDevice(Device)
 'Enable A Specific E3C Devices, Other Devices will be unchanged
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(250) 'E3C Disable Specific Device Command
 MSComm1.Output = Chr$(Device) 'Device Number that will be Disabled
End Sub

Public Sub DisableSpecificDevice(Device)
 'Disable A Specific E3C Devices, Other Devices will be unchanged
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(251) 'E3C Disable Specific Device Command
 MSComm1.Output = Chr$(Device) 'Device Number that will be Disabled
End Sub

Public Sub DisableAllDevicesExcept(Device)
 'Disable All E3C Devices Except (Device)
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(252) 'E3C Disable All Device Except Command
 MSComm1.Output = Chr$(Device) 'Device Number that will be Active
End Sub

Public Sub EnableAllDevicesExcept(Device)
 'Enable All E3C Devices Except (Device)
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(253) 'E3C Enable All Device Except Command
 MSComm1.Output = Chr$(Device) 'Device Number that will be Inactive
End Sub

Public Sub StoreDeviceNumber(Device)
 'Store an E3C Device Number into the Controller
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(255) 'E3C Store Device Number Command
 MSComm1.Output = Chr$(Device) 'Device Number that will be Stored
 WaitForReply 'Wait for R16 to Acknowledge Command
End Sub

Public Function GetDeviceNumber()
 'Read the E3C Device Number from the Controller
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(247) 'E3C Get Device Number Command
 Do 'Wait for Device to Reply
 DoEvents 'Allow Windows to MultiTask
 Until MSComm1.InBufferCount > 0 'If the Device Replies
 GetDeviceNumber = Asc(MSComm1.Input)'Get Device Number from Buffer
End Sub

Sample Code: The E3C Command Set

The PWM8x Command Set
The PWM8x supports an extensive command set, used to set the pulse
width of all output channels, set operation modes, and store and recall
data from the board. Most users will not use many of the functions built
into this controller. The best way to familiarize yourself with the capa-
bilities is to carefully read through the command set in this section. The
“plain English” examples provide a quick, easy to understand definition
of what each command does.

The number to the left of each command indicates the ASCII character
code that must be sent to issue the command. All commands must be
preceded with ASCII character code 254 to place the device in com-
mand mode. See examples at right.

The term “Set PWM” means “Set Pulse Width Modulation”. The PWM
value may be any number from 0 to 255. A value of 0 turns off your
externally connected devices, 255 turns it on all the way, 128 is 50%
duty cycle (half speed on a motor, half brightness on a light). From this
point forward, think of setting the PWM value as setting the amount of
power you would like to ration to your external device. In reality, you
are actually controlling how long the device is allowed to be connected
to ground.

0 - Set All Output Channels to the Same PWM Value (0-255)
1 - Set Output Channel 1 PWM Value (0-255)
2 - Set Output Channel 2 PWM Value (0-255)
3 - Set Output Channel 3 PWM Value (0-255)
4 - Set Output Channel 4 PWM Value (0-255)
5 - Set Output Channel 5 PWM Value (0-255)
6 - Set Output Channel 6 PWM Value (0-255)
7 - Set Output Channel 7 PWM Value (0-255)
8 - Set Output Channel 8 PWM Value (0-255)
A parameter value of 0-255 is required for the above com-
mands, used to set the speed of a motor or the brightness of a
light.

9 - Store Startup PWM Values (0-255)
This command is used to store the currently selected PWM Val-
ues for all 8 channels as the default power-up values. This
command can be used in a room with DC lighting, allowing dif-
ferent areas of the room to have different levels of brightness
when the lights are turned on. A parameter of 0-255 is required
for this command; but has no function.

10 - Store Startup Mode (1, not 1)
The Store Startup Mode command is used to set the way the
PWM8x powers up. A parameter value of 1 causes all 8 chan-
nels to begin cycling immediately, meaning all outputs become
immediately active (based on the Stored Default Powerup PWM
Values above). A parameter value of anything other than 1
causes each channel to rise slowly to its Stored Default Pow-
erup PWM Value, beginning with output channel 1. This mode
is ideal for room lighting applications. When the lights are
turned on in the room, different areas of the room will raise in
brightness level until all 8 levels have reached their maximum
stored level.

Many Visual Basic 6 programming examples are provided to assist in
the development of software for controlling the PWM8x. Additional
source code can be found on our web site at www.controleverything.
com.

The following function may be used to read data from the board. At the
time of writing, this function is only useful for reading the E3C device
number. The PWM8x is not capable of returning other parameters to
the user.

Public Function GetData() 'Read Data from PWM8x
 Do 'Wait for Device to Reply
 DoEvents 'Allow Windows to Multitask
 Until MSComm1.InBufferCount > 0 'If the Device Replies
 GetRelayStatus = Asc(MSComm1.Input) 'Get Status from Serial Buffer
 Debug.Print GetData 'Display in Immediate Window
End Sub

SetLevel 0,128 'Set All Channels to Half Brightness
SetLevel 0,64 'Set All Channels to Quarter Brightness
SetLevel 0,255 'Set All Channels to Full Brightness
SetLevel 1,160 'Set Channel 1 to 3/4 Brightness
SetLevel 8,128 'Set Channel 8 to Half Brightness

Public Sub SetLevel(Channel,PWM) 'Channel Parameter = 0 to 8
 'PWM Parameter = 0 or 255
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(Channel) 'Send Channel Command
 MSComm1.Output = Chr$(PWM) 'Relay to Turn On
End Sub

Public Sub StoreStartup() 'Store Startup Values
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(9) 'Send Channel Command
 MSComm1.Output = Chr$(0) 'This Parameter Required & Ignored
End Sub

StartupMode 0 'All Channels Instantly On
StartupMode 1 'Channels 1-8 Rise Slowly to Full Stored PWM Values

Public Sub StartupMode(Mode) 'Store Startup Values
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(10) 'Send Channel Command
 MSComm1.Output = Chr$(Mode) 'This Parameter Required & Ignored
End Sub

Setting PWM Values

Visual Basic Programming Examples

Controlling PWM Values on Output Channels

Store Defualt Powerup PWM Values

Setting the Startup Mode

Sample Code: Controlling Output Levels

Sample Code: Reading Status of Relays

Sample Code: Power-Up Relay Pattern

Sample Code: Reading Data

+12

RS-232
Data Out

RS-232
Data In

RS-232
Ground

R16 Data Out
R16 Data In
R16 Data Ground

Solder Side of DB9 Female Shown

WARNING:
Do NOT Exceed +12.50 Volts on the power inputs
Do NOT use an unregulated wall adapter (wall wart)
Use ONLY a computer grade supply rated at +12 Volts 2.5 Amps or greater

Outline Dimensions PWM8x Series Controllers

Hole
Size:
.150”

Height:
Allow

Aprox. 1”
for

Cooling

2.500”

6.125”

Baud Rate Jumpers settings are read by the PWM8x only when power is applied. For this reason, it is important to power cycle
the board to read the new jumper settings. Serial Communications Jumpers may be changed at any time.

Jumper Settings

.175”

.1
75

”
The RS-232 voltage levels on laptop computers are different than on desktop computers. For this reason, you MUST set the PC/
MAC jumper to the MAC position for ALL LAPTOP COMPUTERS. You will not be able to communicate reliably to the board
unless this jumper is set properly. You may change this jumper at any time without damaging the computer or the controller.

Important Note for Laptop Users

+12

GND

RS-232 GND

RS-232 In

RS-232 Out

Power and Serial Connections
+12 Connect to a Power Source Between +7 and +18VDC to Power the Logic on the Board

GND Connect to the Ground of the Power Source

RS-232 Ground Connects to the RS-232 Ground of your Computer

RS-232 In Connects to the RS-232 Output of your Computer

RS-232 Out Connects to the RS-232 Input of your Computer

Nearly all NCD devices have the same 5-Position Terminal Block
shown above for connecting power and data to the controller.

+ -
Power Supply + - Motor

+ -

Power Supply + - Light

+ -
Power Supply + - Motor

+ -

Power Supply + - Light

+ -
Power Supply + - Motor

+ -

Power Supply + - Light

+ -
Power Supply + - Motor

+ -

Power Supply + - Light

The PWM8x is capable of controlling lights and motor of different voltages
using a dedicated power supply for each device. You can also use a
shared power supply if all external devices operate at the same voltage.
You should NOT use the power supply included with the Quick Start Kit to
power anything other than the PWM8x controller or damage will result.

PWM8x Example Connections

The PWM8x works by controlling the length of time an external load, such
as a light or motor, is connected to ground. The more time the device is
allowed to be connected to ground, the more power the external load will
appear to have. The PWM8x provides 256 levels of speed control for
motors and 256 levels of brightness control for light bulbs.

Setting an inductive load such as a DC motor to a low speed for
an extended period of time tends to generate more heat than al-
lowing the motor to operate at it’s full on state. Inductive loads
(any externally connected device with a coil) generates flyback
voltages that can result in dangerous high voltages and an exces-
sive amount of heat. Never touch the Hexfets, Heat Sinks, or
Connectors while in operation.

The PWM8x can control 256 levels of pulse width modulation for eight inde-
pendent channels. As the PWM values are changed in software, the LEDs
will change in brightness. The bottom LED shown at left is typically ON.
When a command is received, this LED turns off and the 2nd from the bot-
tom LED will stay lit until your command has executed. Once completed,
the second LED will turn off and the 1st LED will come back on.

Warranty
NCD Warrants its products against defects in materials and
workmanship for a period of 5 years. If you discover a defect,
NCD will, at its option, repair, replace, or refund the purchase
price. Simply return the product with a description of the prob-
lem and a copy of your invoice (if you do not have your invoice,
please include your name and telephone number). We will re-
turn your product, or its replacement, via UPS Ground Service
in the US and Canada Only. Additional shipping charges will
apply to international customers.

This warranty does not apply if the product has been modified
or damaged by accident, abuse, or misuse.

30-Day Money-Back Guarantee
If, within 30 days of having received your product, you find that
it does not suit your needs, you may return it for a refund. NCD
will refund the purchase price of the product, excluding ship-
ping/handling costs. This guarantee does not apply if the prod-
uct has been altered or damaged.

Copyrights and Trademarks
Copyright 2004 by NCD. All rights reserved. Other brand and
product names are trademarks of registered trademarks of their
respective holders.

5-Year Repair or
Replace Warranty

Disclaimer of Liability
NCD is not responsible for special, incidental, or consequential
damages resulting from any breach of warranty, or under any
legal theory, including lost profits, downtime, goodwill, damage
to or replacement of equipment or property, and any costs or
recovering, reprogramming, or reproducing any data stored in
or used with NCD products.

Technical Assistance
Technical questions should be e-mailed to Ryan Sheldon at
ryan@controlanything.com. Technical questions submitted via
e-mail are answered several times daily. Technical support is
also available by calling (417) 646-5644 from 9:00 A.M. to 4:00
P.M. Central Standard Time.

NCD Contact Information

Mailing Address:
National Control Devices
P.O. Box 455
Osceola, MO 64776

Telephone:
(417) 646-5644

FAX:
(417) 646-8302

Internet:
ryan@controlanything.com
www.controlanything.com
www.controleverything.com

