Wired Contact Closure Relay 1-Channel 10-Amp
MIRCR110_ZRS
Wired Contact Closure Switching
The MIRCR110_ZRS relays are a set of two boards, a sender board and a receiver board. The Contact closure input on the sender board controls the relay on the receiver board using a three wire connection. Close the contact closure on the sender board and a relay will trigger on the receiver board - it's just that simple! Contact closure inputs such as buttons, relays, switches or other electronic devices (no voltage) attached to inputs on the sender boards will trigger the relays on the receiver board.MirCR110_ZRS The Ideal Choice
The MIRCR110_ZRS Contact Closure Relay is an ideal choice for a wired contact closure switch. The boards can communicate up to 1000 feet for reliable contact closure switching.
Wired Contact Closure Relay 1-Channel 10-Amp
MIRCR110_ZRSWired Contact Closure Relay
- 1 10-Amp Relay Installed
- Single Pole Double Throw (SPDT) Relay
- Temperature Rating -40° C to 85° C - Sender Board Controls Receiver Board
- Sold in Pairs
- 1 Contact Closure Input on Sender Board
- 1 10-Amp Relay on Receiver Board - Wired Operation Up to 1000'
- Using 3-Wire Cable - Works Together Right Out of the Box!
- No Computer, No Programming, No Set-Up!
Wired Range
Each board is equipped with a ZRS Module. The ZRS Modules will be physically wired together using the screw terminal located on the module. A Quality cable such a s twisted pair Cat 5 or Cat 6 is ideal with a working range of 1000 feet between controllers.
MirC Wired
Contact Closure Relay
The MIRCR110_ZRS are sold in pairs, you will receive both boards shown here when you purchase this set. These boards will give you the opportunity to control a relay using a simple dry contact. Contact closure inputs such as buttons, switches or other electronic devices (no voltage) attached to inputs on the sender board will energize the corresponding relay on the Receiver board. Communication between the Sender and Receiver board is through a three wire connection. Pricing shown on our web site indicates pricing for the pair of boards.Go Where Wireless Won't Reach
MirC boards with a wired connection are designed to be used in applications where wireless is not an option. Direct wired applications are advisable between thick masonry walls, steel, or underground installations where a wireless signal won't travel or in areas where there may be interference. MirC_ZRS controllers are also suitable in applications where security may be a concern.ZRS Modules
Each board is equipped with a ZRS Module. The ZRS Modules will be physically wired together using the screw terminal located on the module. A Quality cable such a s twisted pair Cat 5 or Cat 6 is ideal with a working range of 1000 feet between controllers. The module is powered from the board and each board will require 12 volts of power and can be hard wired or you can purchase a "wall wart" type Power Supply at checkout.
Read Status of Remote Relays
The sending device is also equipped with LEDs that display the status of the remote relay. Status information is verified using 2-way wireless communications. If communication is lost between the remote relay and the sending device, the sending device will turn off the LED. Additionally, every MirC controller is equipped with a Busy/Ready LED. If the Busy LED flashes, this indicates the remote device has successfully received and accepted your contact closure status. If the Busy LED does not flash, the remote device is out of range.
- Order of Operations
- Contact closures are read on one controller
- Data is sent to other controller to turn on or off relays
- Remote device replies back
- Busy light flashes to confirm data was received at the other end
What Happens When Communication is Lost
A common question we receive is what happens to the relay that is energized and communication between the boards is lost. The relay can remain energized or on until communication is re-established or the relay can de-energize or turn off. This is done by a simple jumper on the board and setting it to Beacon or Smart mode. Regardless of the Mode you choose, if the busy LED flashes, the two devices are communicating properly. If the Busy LED does not flash at all, the devices are unable to communicate.Dry Contact Input ONLY
Do not apply voltage to the inputs on the MirC Sender Board. These inputs are designed for dry contact connections only. Applying voltage will damage the board.
MirC Board Features
MirC Relay
This pair of boards allows you to control a relay using a dry contact (no voltage). The dry contact can come from a manual switch, a sensor or device that provides a contact closure, or another relay. As long as the contact closure circuit is closed the relay will remain energized or on. When the circuit opens the relay will de-energize or turn off. Meaning the relay will respond to a toggle or momentary connection depending on what type of input you select. Each MirC pair is ready to stand up to rigorous demands from heat, cold or vibration. Take it from us, these controllers will hold up!Status of Remote Relays
Both boards are equipped with LEDs that display the status of the relay on the receiver board. Status information is verified using 2-way wireless communications. If communication is lost between the devices, the LED will turn off. Additionally, every MirC controller is equipped with a Busy/Ready LED. If the Busy LED flashes, this indicates the other device has successfully received and accepted your contact closure status. If the Busy LED does not flash, the remote device is out of range.
What Happens When Communication is Lost
A common question we receive is what happens to the relay that is energized when communications between the boards is lost. The relay can remain energized or on until communication is re-established or the relay can de-energize or turn off. This is done by a simple jumper on the board and setting it to Beacon or Smart mode. Regardless of the Mode you choose, if the busy LED flashes, the two devices are communicating properly. If the Busy LED does not flash at all, the devices are unable to communicate. See the table below for the differences between Beacon and Smart mode.Contact Closure Inputs
The inputs on these boards accept a dry contact only - no voltage. Users must never apply any voltage to an input on either of the MirX Controllers.Relay Outputs
Relays do NOT provide a voltage output and can be used as a dry contact. They provide a contact closure output and simply interrupt the power to the device you are switching. The relays are rated for 240 VAC or 24 VDC. See the Data Sheets tab above for the specs on relays installed.SPDT Relay Installed
This device has SPDT relays installed. SPDT Single Pole Double Throw Relays have three connections - Common, Normally Open, and Normally Closed. When the relay is off, the common is connected to the normally closed connection of the relay. When the relay coil is energized, the Common swings to the Normally Open Connection of the Relay. You can wire the device you are switching to either the Normally Open or the Normally Closed position using screw terminal connections. The maximum guage wire the terminal can handle is 14 ga but we have used up to 12 ga solid core for several applications with no issues.
2-Million Cycles
MirC series controllers are designed for long life, you should expect to get years of service from your controller and literally 2-million cycles from the relays on board. With a 5-year warranty and a money back guarantee you have nothing to loose! Place your order now, while everything is in front of you.Break-A-Way Tabs for a Smaller Design
The MirC relays have a great feature where space is a premium - Break-A-Way Tabs. The Break-A-Way Tabs allow most boards to fit in an optional undrilled plastic enclosure. Snap off the Break-A-Way Tabs and you have a controller with a smaller profile when you need to fit in a tight space.
5-Year Warranty/Money Back Guarantee
MirC controllers are guaranteed against manufacturing and functionality defects for a full 5 years! Not to mention a 30-day money back guarantee! If for any reason you are not happy with a relay purchased from Relay Pros, simply return it within 30 days and we will give you your money back! Controllers that are damaged by our customers will not of course be warranted under any circumstances.This Board is RoHS Compliant
This board is led free and RoHS Compliant. If your requirements are for RoHS compliant parts this board is manufactured with RoHS compliant led free parts and solder.
Shipping
The boards sold are brand new units shipped from our office conveniently located in Missouri. These boards are completely tested before they are released for shipping With so many boards on our site it is impossible to stock boards, please allow two to three days production time for your order to ship. If you have any questions please feel free to call our office at 800-960-4287 or e-mail us at sales@relaypros.com.Contact Closure Relay Is Here!
A more streamlined manufacturing process brings a more durable, reliable and better relay board to the market. Here's a lists of great features:- Single Pole Double Throw Relays Installed
- Wire to Normally Open or Normally Closed Position
- 12 Guage Solid Core Wire Capacity - Screw Terminal Contact Closure and Relay Connections
- Break-A-Way Tabs Lets you Decide the Board's Size
- Temperature Rating -40° C to 85° C
- RoHS Compliant
User Friendly Board Design
- Control Relay from a Dry Contact (No Voltage)
- Inputs on Sender Board Control Relays on Receiver Board
- Sender Board Displays Status of Remote Relays
MirC Features
Building a Power Budget
The operating range of the board is between 9 & 14 VDC, any power outside this range and the board can become unreliable. Use the tables below to build a power budget for the board you have based on the module you have and the anticipated time the relay will be active.
Power & More
SPDT Relay Controller Specifications
This table covers all NCD SPDT Relay Controllers. All ratings assume 12VDC operation at 70°F (21°C). Please note that most ratings are estimated and may be subject to periodic revision. Some ratings represent stock controller settings without performance enhancement optimizations. The estimated processing time can be impacted by background services and choice of commands. Standby power consumption assume no communications module is installed and no relays are active on the controller. Please add the power consumption of the activated relays and communications module to obtain a better estimation of power consumption.| Specs of NCD SPDT Relay Boards | Minimum | Nominal | Maximum | Notes |
| Operational Voltages | 10VDC | 12VDC | 15VDC | |
| Standby Power Consumption | 35mA | 100mA | 200mA | No Active Relays, No Com Module |
| Relay Power Consumption | 28mA | 35mA | 60mA | Consumption of Each Activated Relay |
| Operational Temperature Range | -40°F (-40°C) | 70°F (21°C) | 185°F (85°C) | Theoretical Component Limits Shown |
| Storage Temperature Range | -67°F (-55°C) | 70°F (21°C) | 185°F (85°C) |
Theoretical Component Limits Shown |
| Operational Ambient Air Humidity | 0% | 50% | 70% | Non-Condensing Humidity Values Shown |
| Relay Activation Time | 4ms | 5ms | 10ms | Needs Further Validation |
| Relay Deactivation Time | 5mS | 10mS | 15mS | Needs Further Validation |
SPDT Relay Installed
This device has SPDT relays installed. SPDT Single Pole Double Throw Relays have three connections - Common, Normally Open, and Normally Closed. When the relay is off, the common is connected to the normally closed connection of the relay. When the relay coil is energized, the Common swings to the Normally Open Connection of the Relay. You can wire the device you are switching to either the Normally Open or the Normally Closed position using screw terminal connections. The maximum guage wire the terminal can handle is 14 ga but we have used up to 12 ga solid core for several applications with no issues.
2-Million Cycles
ProXR series controllers are designed for long life, you should expect to get years of service from your controller and literally 2-million cycles from the relays on board. With a 5-year warranty and a money back guarantee you have nothing to loose! Place your order now, while everything is in front of you.Communication Module Specifications
This table covers all NCD Communication Modules. While NCD communication modules operate at 3.3VDC, the ratings below highlight the effect they will have on the master controller operating at 12VDC at 70°F (21°C). Maximum ratings should be used for power budget planning purposes and may reflect short term absolute maximum peak current consumption. Some ratings are estimated and subject to periodic revision.| Specs of NCD Communication Modules | Minimum | Nominal | Maximum | Notes |
| Operational Temperature Range | -40°F (-40°C) | 70°F (21°C) | 185°F (85°C) | Theoretical Component Limits Shown |
| Storage Temperature Range | -67°F (-55°C) | 70°F (21°C) | 185°F (85°C) | Theoretical Component Limits Shown |
| Operational Ambient Air Humidity | 0% | 50% | 70% | Non-Condensing Humidity Values Shown |
| USB Module Power Consumption | N/A | N/A | N/A |
USB Modules are Powered by the USB Port Do Not Consume Device Current |
| RS-232 Module Power Consumption | 10mA | 20mA |
|
|
| Ethernet Module Power Consumption | 58mA | 82mA | 100mA | |
| WiFi Bluetooth USB Module Power Consumption | 37mA | 50mA | 100mA | Up to 300 Foot Indoor Wireless Range, Unobstructed. Up to 50 Foot Range Through Walls |
| 900MHz Wireless Module Power Consumption | 13mA | 30mA | 50mA | Up to 1,000 Foot Indoor Wireless Range, up to 2 Mile Outdoor Wireless Range using Included Antennas. Up to 28 Miles Outdoor Wireless Range using High-Gain Antennas. |
| KFX Wireless Key Fob | 11mA | 15mA | 25mA | Up to 200 Feet Outdoor Wireless Range using 1, 2, 3, 4, or 5 Button Key Fobs. Up to 700 Feet Outdoor Wireless Range using 8-Button Remotes |
AD8 Analog Input Usage Notice
Analog Inputs should not have a voltage present when powered down. Use a 220 Ohm current limiting resistor on each input to prevent damage to the controller if voltage will be present on the analog input when this controller is powered down. Do not exceed 0 to 5VDC on any analog input or the on-board CPU will be damaged. Most analog inputs include a 10K Pull Up/Down resistor to help keep the inputs quiet when not in use. This 10K resistor may slightly bias the readings of some sensors.Accessories
Power Supply Available
Reliable Power MeansReliable Switching
The PWR12 is regulated power supply providing clean power necessary for the performance of these boards. The PWR12 US power supply is a 120VAC to 12VDC 1.25A 60Hz regulated power supply and it plugs into the barrel connector on the board. The output connector is a 2.1mm I.D. x 5.5mm O.D. x 9.5mm R/A barrel connector.
Enclosure Available
The CFL Enclosure is an undrilled, non-waterproof enclosure and is available at checkout. The CFL enclosure fits both sender and receiver board.CFL Spec Sheet
CAD Drawing: CFL CAD Drawing
3D Model: CFL_3D
Induction Suppression
Controlling
an inductive load using our relay controllers requires the use of induction suppression capacitors. The purpose of this capacitor
is to absorb the high voltages generated by inductive loads, blocking them from the contacts of the relay. Without this capacitor,
the lifespan of the relay will be greatly reduced. Induction can be so severe that it electrically interferes with the microprocessor
logic of our controllers, causing relay banks to shut themselves down unexpectedly.
What Is Relay Logic?
Relay logic uses relays wired in specific configurations to achieve predictable switching behavior. In practical terms, it's the process of arranging relays so they perform the logical control functions your application requires.
Get a printout of this page
Relay Logic
Relay Wiring Samples
This page provides simple examples showing how to wire a single relay - or multiple relays - for common switching applications. We use a light as the example load, but you can substitute a gate controller, security panel input, dry contact device, motor trigger, or most other switched loads. These wiring samples demonstrate different ways to connect relays to achieve the switching behavior you need.
Relay Types
SPDT Relay
SPDT (Single Pole Double Throw) relays include three terminals: Common (COM), Normally Open (NO), and Normally Closed (NC).
- When the relay is off, COM is connected to NC.
- When the relay is energized, COM switches to NO.
Your load can be wired to either the NO or NC terminal depending on whether you want the device to turn on when the relay activates or when it releases. Examples below demonstrate both wiring methods. The SPDT relays offered on this site are 5-Amp, 10-Amp and 20-Amp models.
SPST Relay
SPST (Single Pole Single Throw) relays provide two terminals: Common (COM) and Normally Open (NO).
When the relay coil is energized, COM connects to NO to power the load. The only SPST relays offered on this site are our 30-Amp models. All SPST examples shown on this page apply to these relays as long as the example does not require a Normally Closed terminal.
DPDT Relay
A DPDT (Double Pole Double Throw) relay contains two SPDT switches that operate together.
- Each side includes its own COM, NO, and NC terminals.
- Both internal switches change state at the same time.
This allows you to control two independent circuits with one relay. Wiring for each side of a DPDT relay follows the same
rules as an SPDT relay, so the examples on this page apply directly. We offer the DPDT relays in 1-Amp, 3-Amp and 5-Amp models
on ProXR boards starting at 8 relays.
Relay Grouping in the ProXR Command Set lets you combine individual relays to function like a DPDT relay using separate channels. This is ideal when you need to control multiple relays simultaneously or exceed the 5-Amp switching limit of our standard DPDT relays.
Relay Logic Examples
Example 1 - Simple Off/On Control
This example shows the most basic way to use a relay to switch a device such as a light. When the relay energizes, its NO (Normally Open) contact closes to COM (Common), completing the circuit and turning the light on.Only a single power wire is switched in this setup, making it the simplest method for controlling a light - or any device - using a relay.
Use this example for switching a light or any device you want to power only when the relay is on.
Example 2 - Simple On/Off (Using NC Contact)
This wiring method keeps the device on by default. The relay switches a single power wire through the COM (Common) and NC (Normally Closed) terminals.When the relay is not energized, the NC contact is closed to COM and the light remains on.
When the relay energizes, the NC contact opens, interrupting power and turning the light off.
This approach is ideal for devices that stay on most of the time, reducing relay wear since it doesn't need to remain energized to keep the device powered. It's also a useful method for power-cycling equipment - energizing the relay momentarily will turn the device off.
Example 3 - AND Logic Using Two Relays
This example shows how two relays can work together so a light turns on only when both relays are energized. This creates an AND Logic condition:Relay 1 AND Relay 2 must be on for the light to receive power.
A single power wire is switched, but it must pass through both relay contacts before reaching the light. This setup is ideal when two conditions must be met at the same time - such as requiring input from multiple sensors or system parameters.
MirC/MirX Users: This wiring requires two contact closure inputs on the sender board before the receiver's relay activates. Use this approach when two independent outputs must close before turning on the light.
- For example, a light could turn on only when:
- A light sensor detects it's dark AND
- A motion sensor detects activity in the room
Example 4 - AND Logic Using Three Relays
This example expands on the previous AND Logic concept. Here, the light will turn on only when all three relays are energized:
Relay 1 AND Relay 2 AND Relay 3 must be on for power to reach the light.
A single power wire is routed through all three relay contacts. Wiring from the NO (Normally Open) of Relay 1 to the COM (Common) of Relay 2, then from the NO of Relay 2 to the COM of Relay 3, creates a series path that requires every relay to close before the light can activate.
This method can be scaled easily - just continue wiring NO of each relay to the COM of the next relay. Add as many relays as needed to meet your logic or safety requirements.
Example 5 - AND/OR Logic with Override
This example demonstrates a combined AND/OR logic setup. The light will turn on when:
- Relay 1 AND Relay 2 are both energized OR Relay 3 is energized (override)
- For example:
- Relay 1 = night/day sensor
- Relay 2 = motion sensor
- Relay 3 = manual override (local switch)
A/D Board Users: The Relay Activator function on any A/D board or ProXR Lite board lets you connect a button or switch to any A/D input. This input can then control the override relay, giving you a convenient local button to manually override the first two relays.
MirC/MirX Users: Add a manual button or switch to trigger the third relay when you need direct control instead of sensor-driven control.
Reactor Users: A local button or switch can be wired to the third relay input to provide a manual override for sensor-based logic.
Example 6 - OR Logic (Either Relay Activates)
This example demonstrates OR Logic - the light will turn on when either relay is energized. Only one power wire is switched, but it can pass through Relay 1 or Relay 2 to reach the light.
- If Relay 1 activates, the light turns on
- If Relay 2 activates, the light turns on
- If both activate, the light remains on
- A timer controlling one relay, with a manual or secondary control for the other.
- Two sensors where either condition (motion detected or low light, for example) should activate the light.
MirC/MirX Users: Wire two contact closure inputs into the sender board - either input can trigger the receiver relay to control the light.
Example 7 - 3-Way Switch (Relay-Based 3-Way Control)
This example shows how to create a 3-way light switch setup using relays. A traditional 3-way circuit allows two switches to control the same light from different locations. In this wiring sample, each physical switch is replaced by a relay - but the operation is the same.
Only one power wire is switched, and the relays toggle the light depending on their current state.
- Activating either relay will toggle the light
- Activating both relays at the same time has the same effect as flipping both switches at once
Example 8 - DC Motor Direction Control
This example demonstrates how to control the direction of a DC motor using two relays. By changing how the motor's leads connect to power, you can run the motor forward, reverse, or place it in a brake state. Braking is achieved by tying both motor terminals to the same power connection, which stops rotation through Faraday's Law.
- Relay Operation Summary
- Relay 1 Off / Relay 2 Off → Motor Brake to +
- Relay 1 On / Relay 2 Off → Motor Forward
- Relay 1 Off / Relay 2 On → Motor Reverse
- Relay 1 On / Relay 2 On → Motor Brake to -
- The induction suppression capacitor prevents the relay from shutting off due to motor back-EMF
- The 0.1µF filter capacitor reduces electrical noise, especially useful when powering sensitive electronics such as radios or amplifiers.
- Capacitor Placement
- Place the induction suppression capacitor near the relays
- Place the filter capacitor near the motor
- Additional capacitors may be needed for certain motors
Motors draw significantly more current at startup than during continuous operation - often 2-3 times their rated running current. For example, a motor rated at 5A (125VAC) may require 10-15A to begin turning. Always select a relay that exceeds the motor's initial inrush current, not just its running current. In this case, a 20-30A relay provides optimal performance and longevity.



